Metamath Proof Explorer


Theorem sb6rf

Description: Reversed substitution. For a version requiring disjoint variables, but fewer axioms, see sb6rfv . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker sb6rfv if possible. (Contributed by NM, 1-Aug-1993) (Revised by Mario Carneiro, 6-Oct-2016) (Proof shortened by Wolf Lammen, 21-Sep-2018) (New usage is discouraged.)

Ref Expression
Hypothesis sb5rf.1
|- F/ y ph
Assertion sb6rf
|- ( ph <-> A. y ( y = x -> [ y / x ] ph ) )

Proof

Step Hyp Ref Expression
1 sb5rf.1
 |-  F/ y ph
2 sbequ12r
 |-  ( y = x -> ( [ y / x ] ph <-> ph ) )
3 1 2 equsal
 |-  ( A. y ( y = x -> [ y / x ] ph ) <-> ph )
4 3 bicomi
 |-  ( ph <-> A. y ( y = x -> [ y / x ] ph ) )