Metamath Proof Explorer


Theorem sb8

Description: Substitution of variable in universal quantifier. Usage of this theorem is discouraged because it depends on ax-13 . For a version requiring disjoint variables, but fewer axioms, see sb8v . (Contributed by NM, 16-May-1993) (Revised by Mario Carneiro, 6-Oct-2016) (Proof shortened by Jim Kingdon, 15-Jan-2018) (New usage is discouraged.)

Ref Expression
Hypothesis sb8.1
|- F/ y ph
Assertion sb8
|- ( A. x ph <-> A. y [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 sb8.1
 |-  F/ y ph
2 1 nfs1
 |-  F/ x [ y / x ] ph
3 sbequ12
 |-  ( x = y -> ( ph <-> [ y / x ] ph ) )
4 1 2 3 cbval
 |-  ( A. x ph <-> A. y [ y / x ] ph )