Metamath Proof Explorer


Theorem sb8fOLD

Description: Obsolete version of sb8f as of 5-Dec-2024. (Contributed by NM, 16-May-1993) (Revised by Wolf Lammen, 19-Jan-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis sb8f.nf
|- F/ y ph
Assertion sb8fOLD
|- ( A. x ph <-> A. y [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 sb8f.nf
 |-  F/ y ph
2 nfs1v
 |-  F/ x [ y / x ] ph
3 sbequ12
 |-  ( x = y -> ( ph <-> [ y / x ] ph ) )
4 1 2 3 cbvalv1
 |-  ( A. x ph <-> A. y [ y / x ] ph )