Metamath Proof Explorer


Theorem sb8v

Description: Substitution of variable in universal quantifier. Version of sb8 with a disjoint variable condition, not requiring ax-13 . (Contributed by NM, 16-May-1993) (Revised by Wolf Lammen, 19-Jan-2023)

Ref Expression
Hypothesis sb8v.nf
|- F/ y ph
Assertion sb8v
|- ( A. x ph <-> A. y [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 sb8v.nf
 |-  F/ y ph
2 nfs1v
 |-  F/ x [ y / x ] ph
3 sbequ12
 |-  ( x = y -> ( ph <-> [ y / x ] ph ) )
4 1 2 3 cbvalv1
 |-  ( A. x ph <-> A. y [ y / x ] ph )