| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbequ12a |  |-  ( y = x -> ( [ x / y ] ph <-> [ y / x ] ph ) ) | 
						
							| 2 | 1 | equcoms |  |-  ( x = y -> ( [ x / y ] ph <-> [ y / x ] ph ) ) | 
						
							| 3 | 2 | sps |  |-  ( A. x x = y -> ( [ x / y ] ph <-> [ y / x ] ph ) ) | 
						
							| 4 | 3 | dral1 |  |-  ( A. x x = y -> ( A. x [ x / y ] ph <-> A. y [ y / x ] ph ) ) | 
						
							| 5 |  | nfnae |  |-  F/ x -. A. x x = y | 
						
							| 6 |  | nfnae |  |-  F/ y -. A. x x = y | 
						
							| 7 |  | nfsb2 |  |-  ( -. A. y y = x -> F/ y [ x / y ] ph ) | 
						
							| 8 | 7 | naecoms |  |-  ( -. A. x x = y -> F/ y [ x / y ] ph ) | 
						
							| 9 |  | nfsb2 |  |-  ( -. A. x x = y -> F/ x [ y / x ] ph ) | 
						
							| 10 | 2 | a1i |  |-  ( -. A. x x = y -> ( x = y -> ( [ x / y ] ph <-> [ y / x ] ph ) ) ) | 
						
							| 11 | 5 6 8 9 10 | cbv2 |  |-  ( -. A. x x = y -> ( A. x [ x / y ] ph <-> A. y [ y / x ] ph ) ) | 
						
							| 12 | 4 11 | pm2.61i |  |-  ( A. x [ x / y ] ph <-> A. y [ y / x ] ph ) |