Step |
Hyp |
Ref |
Expression |
1 |
|
sbequ12a |
|- ( y = x -> ( [ x / y ] ph <-> [ y / x ] ph ) ) |
2 |
1
|
equcoms |
|- ( x = y -> ( [ x / y ] ph <-> [ y / x ] ph ) ) |
3 |
2
|
sps |
|- ( A. x x = y -> ( [ x / y ] ph <-> [ y / x ] ph ) ) |
4 |
3
|
dral1 |
|- ( A. x x = y -> ( A. x [ x / y ] ph <-> A. y [ y / x ] ph ) ) |
5 |
|
nfnae |
|- F/ x -. A. x x = y |
6 |
|
nfnae |
|- F/ y -. A. x x = y |
7 |
|
nfsb2 |
|- ( -. A. y y = x -> F/ y [ x / y ] ph ) |
8 |
7
|
naecoms |
|- ( -. A. x x = y -> F/ y [ x / y ] ph ) |
9 |
|
nfsb2 |
|- ( -. A. x x = y -> F/ x [ y / x ] ph ) |
10 |
2
|
a1i |
|- ( -. A. x x = y -> ( x = y -> ( [ x / y ] ph <-> [ y / x ] ph ) ) ) |
11 |
5 6 8 9 10
|
cbv2 |
|- ( -. A. x x = y -> ( A. x [ x / y ] ph <-> A. y [ y / x ] ph ) ) |
12 |
4 11
|
pm2.61i |
|- ( A. x [ x / y ] ph <-> A. y [ y / x ] ph ) |