Metamath Proof Explorer


Theorem sb9i

Description: Commutation of quantification and substitution variables. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 5-Aug-1993) (Proof shortened by Wolf Lammen, 15-Jun-2019) (New usage is discouraged.)

Ref Expression
Assertion sb9i
|- ( A. x [ x / y ] ph -> A. y [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 sb9
 |-  ( A. x [ x / y ] ph <-> A. y [ y / x ] ph )
2 1 biimpi
 |-  ( A. x [ x / y ] ph -> A. y [ y / x ] ph )