Metamath Proof Explorer


Theorem sbalv

Description: Quantify with new variable inside substitution. (Contributed by NM, 18-Aug-1993)

Ref Expression
Hypothesis sbalv.1
|- ( [ y / x ] ph <-> ps )
Assertion sbalv
|- ( [ y / x ] A. z ph <-> A. z ps )

Proof

Step Hyp Ref Expression
1 sbalv.1
 |-  ( [ y / x ] ph <-> ps )
2 sbal
 |-  ( [ y / x ] A. z ph <-> A. z [ y / x ] ph )
3 1 albii
 |-  ( A. z [ y / x ] ph <-> A. z ps )
4 2 3 bitri
 |-  ( [ y / x ] A. z ph <-> A. z ps )