Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( ph /\ ps ) -> ph ) |
2 |
1
|
sbimi |
|- ( [ y / x ] ( ph /\ ps ) -> [ y / x ] ph ) |
3 |
|
simpr |
|- ( ( ph /\ ps ) -> ps ) |
4 |
3
|
sbimi |
|- ( [ y / x ] ( ph /\ ps ) -> [ y / x ] ps ) |
5 |
2 4
|
jca |
|- ( [ y / x ] ( ph /\ ps ) -> ( [ y / x ] ph /\ [ y / x ] ps ) ) |
6 |
|
pm3.2 |
|- ( ph -> ( ps -> ( ph /\ ps ) ) ) |
7 |
6
|
sb2imi |
|- ( [ y / x ] ph -> ( [ y / x ] ps -> [ y / x ] ( ph /\ ps ) ) ) |
8 |
7
|
imp |
|- ( ( [ y / x ] ph /\ [ y / x ] ps ) -> [ y / x ] ( ph /\ ps ) ) |
9 |
5 8
|
impbii |
|- ( [ y / x ] ( ph /\ ps ) <-> ( [ y / x ] ph /\ [ y / x ] ps ) ) |