Metamath Proof Explorer


Theorem sbaniota

Description: Theorem *14.26 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 12-Jul-2011)

Ref Expression
Assertion sbaniota
|- ( E! x ph -> ( E. x ( ph /\ ps ) <-> [. ( iota x ph ) / x ]. ps ) )

Proof

Step Hyp Ref Expression
1 eupickbi
 |-  ( E! x ph -> ( E. x ( ph /\ ps ) <-> A. x ( ph -> ps ) ) )
2 sbiota1
 |-  ( E! x ph -> ( A. x ( ph -> ps ) <-> [. ( iota x ph ) / x ]. ps ) )
3 1 2 bitrd
 |-  ( E! x ph -> ( E. x ( ph /\ ps ) <-> [. ( iota x ph ) / x ]. ps ) )