Description: Theorem *14.26 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 12-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | sbaniota | |- ( E! x ph -> ( E. x ( ph /\ ps ) <-> [. ( iota x ph ) / x ]. ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupickbi | |- ( E! x ph -> ( E. x ( ph /\ ps ) <-> A. x ( ph -> ps ) ) ) |
|
2 | sbiota1 | |- ( E! x ph -> ( A. x ( ph -> ps ) <-> [. ( iota x ph ) / x ]. ps ) ) |
|
3 | 1 2 | bitrd | |- ( E! x ph -> ( E. x ( ph /\ ps ) <-> [. ( iota x ph ) / x ]. ps ) ) |