| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfbi2 |
|- ( ( ph <-> ps ) <-> ( ( ph -> ps ) /\ ( ps -> ph ) ) ) |
| 2 |
1
|
sbbii |
|- ( [ y / x ] ( ph <-> ps ) <-> [ y / x ] ( ( ph -> ps ) /\ ( ps -> ph ) ) ) |
| 3 |
|
sbim |
|- ( [ y / x ] ( ph -> ps ) <-> ( [ y / x ] ph -> [ y / x ] ps ) ) |
| 4 |
|
sbim |
|- ( [ y / x ] ( ps -> ph ) <-> ( [ y / x ] ps -> [ y / x ] ph ) ) |
| 5 |
3 4
|
anbi12i |
|- ( ( [ y / x ] ( ph -> ps ) /\ [ y / x ] ( ps -> ph ) ) <-> ( ( [ y / x ] ph -> [ y / x ] ps ) /\ ( [ y / x ] ps -> [ y / x ] ph ) ) ) |
| 6 |
|
sban |
|- ( [ y / x ] ( ( ph -> ps ) /\ ( ps -> ph ) ) <-> ( [ y / x ] ( ph -> ps ) /\ [ y / x ] ( ps -> ph ) ) ) |
| 7 |
|
dfbi2 |
|- ( ( [ y / x ] ph <-> [ y / x ] ps ) <-> ( ( [ y / x ] ph -> [ y / x ] ps ) /\ ( [ y / x ] ps -> [ y / x ] ph ) ) ) |
| 8 |
5 6 7
|
3bitr4i |
|- ( [ y / x ] ( ( ph -> ps ) /\ ( ps -> ph ) ) <-> ( [ y / x ] ph <-> [ y / x ] ps ) ) |
| 9 |
2 8
|
bitri |
|- ( [ y / x ] ( ph <-> ps ) <-> ( [ y / x ] ph <-> [ y / x ] ps ) ) |