Description: Reversal of substitution. (Contributed by AV, 6-Aug-2023) (Proof shortened by Wolf Lammen, 4-Sep-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sbbib.y | |- F/ y ph |
|
sbbib.x | |- F/ x ps |
||
Assertion | sbbib | |- ( A. y ( [ y / x ] ph <-> ps ) <-> A. x ( ph <-> [ x / y ] ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbib.y | |- F/ y ph |
|
2 | sbbib.x | |- F/ x ps |
|
3 | nfs1v | |- F/ x [ y / x ] ph |
|
4 | 3 2 | nfbi | |- F/ x ( [ y / x ] ph <-> ps ) |
5 | nfs1v | |- F/ y [ x / y ] ps |
|
6 | 1 5 | nfbi | |- F/ y ( ph <-> [ x / y ] ps ) |
7 | sbequ12r | |- ( y = x -> ( [ y / x ] ph <-> ph ) ) |
|
8 | sbequ12 | |- ( y = x -> ( ps <-> [ x / y ] ps ) ) |
|
9 | 7 8 | bibi12d | |- ( y = x -> ( ( [ y / x ] ph <-> ps ) <-> ( ph <-> [ x / y ] ps ) ) ) |
10 | 4 6 9 | cbvalv1 | |- ( A. y ( [ y / x ] ph <-> ps ) <-> A. x ( ph <-> [ x / y ] ps ) ) |