Metamath Proof Explorer


Theorem sbbib

Description: Reversal of substitution. (Contributed by AV, 6-Aug-2023) (Proof shortened by Wolf Lammen, 4-Sep-2023)

Ref Expression
Hypotheses sbbib.y
|- F/ y ph
sbbib.x
|- F/ x ps
Assertion sbbib
|- ( A. y ( [ y / x ] ph <-> ps ) <-> A. x ( ph <-> [ x / y ] ps ) )

Proof

Step Hyp Ref Expression
1 sbbib.y
 |-  F/ y ph
2 sbbib.x
 |-  F/ x ps
3 nfs1v
 |-  F/ x [ y / x ] ph
4 3 2 nfbi
 |-  F/ x ( [ y / x ] ph <-> ps )
5 nfs1v
 |-  F/ y [ x / y ] ps
6 1 5 nfbi
 |-  F/ y ( ph <-> [ x / y ] ps )
7 sbequ12r
 |-  ( y = x -> ( [ y / x ] ph <-> ph ) )
8 sbequ12
 |-  ( y = x -> ( ps <-> [ x / y ] ps ) )
9 7 8 bibi12d
 |-  ( y = x -> ( ( [ y / x ] ph <-> ps ) <-> ( ph <-> [ x / y ] ps ) ) )
10 4 6 9 cbvalv1
 |-  ( A. y ( [ y / x ] ph <-> ps ) <-> A. x ( ph <-> [ x / y ] ps ) )