Description: Reversal of substitution. (Contributed by AV, 6-Aug-2023) (Proof shortened by Wolf Lammen, 4-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbbib.y | |- F/ y ph | |
| sbbib.x | |- F/ x ps | ||
| Assertion | sbbib | |- ( A. y ( [ y / x ] ph <-> ps ) <-> A. x ( ph <-> [ x / y ] ps ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbbib.y | |- F/ y ph | |
| 2 | sbbib.x | |- F/ x ps | |
| 3 | nfs1v | |- F/ x [ y / x ] ph | |
| 4 | 3 2 | nfbi | |- F/ x ( [ y / x ] ph <-> ps ) | 
| 5 | nfs1v | |- F/ y [ x / y ] ps | |
| 6 | 1 5 | nfbi | |- F/ y ( ph <-> [ x / y ] ps ) | 
| 7 | sbequ12r | |- ( y = x -> ( [ y / x ] ph <-> ph ) ) | |
| 8 | sbequ12 | |- ( y = x -> ( ps <-> [ x / y ] ps ) ) | |
| 9 | 7 8 | bibi12d | |- ( y = x -> ( ( [ y / x ] ph <-> ps ) <-> ( ph <-> [ x / y ] ps ) ) ) | 
| 10 | 4 6 9 | cbvalv1 | |- ( A. y ( [ y / x ] ph <-> ps ) <-> A. x ( ph <-> [ x / y ] ps ) ) |