Description: Deduction substituting both sides of a biconditional. (Contributed by NM, 30-Jun-1993) Remove dependency on ax-10 and ax-13 . (Revised by Wolf Lammen, 24-Nov-2022) Revise df-sb . (Revised by Steven Nguyen, 11-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sbbid.1 | |- F/ x ph |
|
sbbid.2 | |- ( ph -> ( ps <-> ch ) ) |
||
Assertion | sbbid | |- ( ph -> ( [ y / x ] ps <-> [ y / x ] ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbid.1 | |- F/ x ph |
|
2 | sbbid.2 | |- ( ph -> ( ps <-> ch ) ) |
|
3 | 1 2 | alrimi | |- ( ph -> A. x ( ps <-> ch ) ) |
4 | spsbbi | |- ( A. x ( ps <-> ch ) -> ( [ y / x ] ps <-> [ y / x ] ch ) ) |
|
5 | 3 4 | syl | |- ( ph -> ( [ y / x ] ps <-> [ y / x ] ch ) ) |