Description: Deduction substituting both sides of a biconditional, with ph and x disjoint. See also sbbid . (Contributed by Wolf Lammen, 6-May-2023) (Proof shortened by Steven Nguyen, 6-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbbidv.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| Assertion | sbbidv | |- ( ph -> ( [ t / x ] ps <-> [ t / x ] ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbidv.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| 2 | 1 | alrimiv | |- ( ph -> A. x ( ps <-> ch ) ) |
| 3 | spsbbi | |- ( A. x ( ps <-> ch ) -> ( [ t / x ] ps <-> [ t / x ] ch ) ) |
|
| 4 | 2 3 | syl | |- ( ph -> ( [ t / x ] ps <-> [ t / x ] ch ) ) |