Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 14-May-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sbbii.1 | |- ( ph <-> ps ) |
|
Assertion | sbbii | |- ( [ t / x ] ph <-> [ t / x ] ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbii.1 | |- ( ph <-> ps ) |
|
2 | 1 | biimpi | |- ( ph -> ps ) |
3 | 2 | sbimi | |- ( [ t / x ] ph -> [ t / x ] ps ) |
4 | 1 | biimpri | |- ( ps -> ph ) |
5 | 4 | sbimi | |- ( [ t / x ] ps -> [ t / x ] ph ) |
6 | 3 5 | impbii | |- ( [ t / x ] ph <-> [ t / x ] ps ) |