Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 14-May-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbbii.1 | |- ( ph <-> ps ) |
|
| Assertion | sbbii | |- ( [ t / x ] ph <-> [ t / x ] ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbii.1 | |- ( ph <-> ps ) |
|
| 2 | 1 | biimpi | |- ( ph -> ps ) |
| 3 | 2 | sbimi | |- ( [ t / x ] ph -> [ t / x ] ps ) |
| 4 | 1 | biimpri | |- ( ps -> ph ) |
| 5 | 4 | sbimi | |- ( [ t / x ] ps -> [ t / x ] ph ) |
| 6 | 3 5 | impbii | |- ( [ t / x ] ph <-> [ t / x ] ps ) |