Metamath Proof Explorer


Theorem sbbii

Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 14-May-1993)

Ref Expression
Hypothesis sbbii.1
|- ( ph <-> ps )
Assertion sbbii
|- ( [ t / x ] ph <-> [ t / x ] ps )

Proof

Step Hyp Ref Expression
1 sbbii.1
 |-  ( ph <-> ps )
2 1 biimpi
 |-  ( ph -> ps )
3 2 sbimi
 |-  ( [ t / x ] ph -> [ t / x ] ps )
4 1 biimpri
 |-  ( ps -> ph )
5 4 sbimi
 |-  ( [ t / x ] ps -> [ t / x ] ph )
6 3 5 impbii
 |-  ( [ t / x ] ph <-> [ t / x ] ps )