Metamath Proof Explorer


Theorem sbc2ie

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008) (Revised by Mario Carneiro, 19-Dec-2013) (Proof shortened by Gino Giotto, 12-Oct-2024)

Ref Expression
Hypotheses sbc2ie.1
|- A e. _V
sbc2ie.2
|- B e. _V
sbc2ie.3
|- ( ( x = A /\ y = B ) -> ( ph <-> ps ) )
Assertion sbc2ie
|- ( [. A / x ]. [. B / y ]. ph <-> ps )

Proof

Step Hyp Ref Expression
1 sbc2ie.1
 |-  A e. _V
2 sbc2ie.2
 |-  B e. _V
3 sbc2ie.3
 |-  ( ( x = A /\ y = B ) -> ( ph <-> ps ) )
4 2 a1i
 |-  ( x = A -> B e. _V )
5 4 3 sbcied
 |-  ( x = A -> ( [. B / y ]. ph <-> ps ) )
6 1 5 sbcie
 |-  ( [. A / x ]. [. B / y ]. ph <-> ps )