Metamath Proof Explorer


Theorem sbc2ieOLD

Description: Obsolete version of sbc2ie as of 12-Oct-2024. (Contributed by NM, 16-Dec-2008) (Revised by Mario Carneiro, 19-Dec-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses sbc2ieOLD.1
|- A e. _V
sbc2ieOLD.2
|- B e. _V
sbc2ieOLD.3
|- ( ( x = A /\ y = B ) -> ( ph <-> ps ) )
Assertion sbc2ieOLD
|- ( [. A / x ]. [. B / y ]. ph <-> ps )

Proof

Step Hyp Ref Expression
1 sbc2ieOLD.1
 |-  A e. _V
2 sbc2ieOLD.2
 |-  B e. _V
3 sbc2ieOLD.3
 |-  ( ( x = A /\ y = B ) -> ( ph <-> ps ) )
4 nfv
 |-  F/ x ps
5 nfv
 |-  F/ y ps
6 2 nfth
 |-  F/ x B e. _V
7 4 5 6 3 sbc2iegf
 |-  ( ( A e. _V /\ B e. _V ) -> ( [. A / x ]. [. B / y ]. ph <-> ps ) )
8 1 2 7 mp2an
 |-  ( [. A / x ]. [. B / y ]. ph <-> ps )