Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008) (Proof shortened by Mario Carneiro, 18-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sbc2iedv.1 | |- A e. _V |
|
sbc2iedv.2 | |- B e. _V |
||
sbc2iedv.3 | |- ( ph -> ( ( x = A /\ y = B ) -> ( ps <-> ch ) ) ) |
||
Assertion | sbc2iedv | |- ( ph -> ( [. A / x ]. [. B / y ]. ps <-> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc2iedv.1 | |- A e. _V |
|
2 | sbc2iedv.2 | |- B e. _V |
|
3 | sbc2iedv.3 | |- ( ph -> ( ( x = A /\ y = B ) -> ( ps <-> ch ) ) ) |
|
4 | 1 | a1i | |- ( ph -> A e. _V ) |
5 | 2 | a1i | |- ( ( ph /\ x = A ) -> B e. _V ) |
6 | 3 | impl | |- ( ( ( ph /\ x = A ) /\ y = B ) -> ( ps <-> ch ) ) |
7 | 5 6 | sbcied | |- ( ( ph /\ x = A ) -> ( [. B / y ]. ps <-> ch ) ) |
8 | 4 7 | sbcied | |- ( ph -> ( [. A / x ]. [. B / y ]. ps <-> ch ) ) |