Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008) (Proof shortened by Mario Carneiro, 18-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbc2iedv.1 | |- A e. _V |
|
| sbc2iedv.2 | |- B e. _V |
||
| sbc2iedv.3 | |- ( ph -> ( ( x = A /\ y = B ) -> ( ps <-> ch ) ) ) |
||
| Assertion | sbc2iedv | |- ( ph -> ( [. A / x ]. [. B / y ]. ps <-> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc2iedv.1 | |- A e. _V |
|
| 2 | sbc2iedv.2 | |- B e. _V |
|
| 3 | sbc2iedv.3 | |- ( ph -> ( ( x = A /\ y = B ) -> ( ps <-> ch ) ) ) |
|
| 4 | 1 | a1i | |- ( ph -> A e. _V ) |
| 5 | 2 | a1i | |- ( ( ph /\ x = A ) -> B e. _V ) |
| 6 | 3 | impl | |- ( ( ( ph /\ x = A ) /\ y = B ) -> ( ps <-> ch ) ) |
| 7 | 5 6 | sbcied | |- ( ( ph /\ x = A ) -> ( [. B / y ]. ps <-> ch ) ) |
| 8 | 4 7 | sbcied | |- ( ph -> ( [. A / x ]. [. B / y ]. ps <-> ch ) ) |