| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbc2iegf.1 |  |-  F/ x ps | 
						
							| 2 |  | sbc2iegf.2 |  |-  F/ y ps | 
						
							| 3 |  | sbc2iegf.3 |  |-  F/ x B e. W | 
						
							| 4 |  | sbc2iegf.4 |  |-  ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) | 
						
							| 5 |  | simpl |  |-  ( ( A e. V /\ B e. W ) -> A e. V ) | 
						
							| 6 |  | simpl |  |-  ( ( B e. W /\ x = A ) -> B e. W ) | 
						
							| 7 | 4 | adantll |  |-  ( ( ( B e. W /\ x = A ) /\ y = B ) -> ( ph <-> ps ) ) | 
						
							| 8 |  | nfv |  |-  F/ y ( B e. W /\ x = A ) | 
						
							| 9 | 2 | a1i |  |-  ( ( B e. W /\ x = A ) -> F/ y ps ) | 
						
							| 10 | 6 7 8 9 | sbciedf |  |-  ( ( B e. W /\ x = A ) -> ( [. B / y ]. ph <-> ps ) ) | 
						
							| 11 | 10 | adantll |  |-  ( ( ( A e. V /\ B e. W ) /\ x = A ) -> ( [. B / y ]. ph <-> ps ) ) | 
						
							| 12 |  | nfv |  |-  F/ x A e. V | 
						
							| 13 | 12 3 | nfan |  |-  F/ x ( A e. V /\ B e. W ) | 
						
							| 14 | 1 | a1i |  |-  ( ( A e. V /\ B e. W ) -> F/ x ps ) | 
						
							| 15 | 5 11 13 14 | sbciedf |  |-  ( ( A e. V /\ B e. W ) -> ( [. A / x ]. [. B / y ]. ph <-> ps ) ) |