| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfsbcq2 |
|- ( y = A -> ( [ y / x ] ph <-> [. A / x ]. ph ) ) |
| 2 |
|
eqeq2 |
|- ( y = A -> ( x = y <-> x = A ) ) |
| 3 |
2
|
anbi1d |
|- ( y = A -> ( ( x = y /\ ph ) <-> ( x = A /\ ph ) ) ) |
| 4 |
3
|
exbidv |
|- ( y = A -> ( E. x ( x = y /\ ph ) <-> E. x ( x = A /\ ph ) ) ) |
| 5 |
|
sb5 |
|- ( [ y / x ] ph <-> E. x ( x = y /\ ph ) ) |
| 6 |
1 4 5
|
vtoclbg |
|- ( A e. _V -> ( [. A / x ]. ph <-> E. x ( x = A /\ ph ) ) ) |
| 7 |
6
|
orcd |
|- ( A e. _V -> ( ( [. A / x ]. ph <-> E. x ( x = A /\ ph ) ) \/ ( [. A / x ]. ph <-> A. x ( x = A -> ph ) ) ) ) |
| 8 |
|
pm5.15 |
|- ( ( [. A / x ]. ph <-> E. x ( x = A /\ ph ) ) \/ ( [. A / x ]. ph <-> -. E. x ( x = A /\ ph ) ) ) |
| 9 |
|
vex |
|- x e. _V |
| 10 |
|
eleq1 |
|- ( x = A -> ( x e. _V <-> A e. _V ) ) |
| 11 |
9 10
|
mpbii |
|- ( x = A -> A e. _V ) |
| 12 |
11
|
adantr |
|- ( ( x = A /\ ph ) -> A e. _V ) |
| 13 |
12
|
con3i |
|- ( -. A e. _V -> -. ( x = A /\ ph ) ) |
| 14 |
13
|
nexdv |
|- ( -. A e. _V -> -. E. x ( x = A /\ ph ) ) |
| 15 |
11
|
con3i |
|- ( -. A e. _V -> -. x = A ) |
| 16 |
15
|
pm2.21d |
|- ( -. A e. _V -> ( x = A -> ph ) ) |
| 17 |
16
|
alrimiv |
|- ( -. A e. _V -> A. x ( x = A -> ph ) ) |
| 18 |
14 17
|
2thd |
|- ( -. A e. _V -> ( -. E. x ( x = A /\ ph ) <-> A. x ( x = A -> ph ) ) ) |
| 19 |
18
|
bibi2d |
|- ( -. A e. _V -> ( ( [. A / x ]. ph <-> -. E. x ( x = A /\ ph ) ) <-> ( [. A / x ]. ph <-> A. x ( x = A -> ph ) ) ) ) |
| 20 |
19
|
orbi2d |
|- ( -. A e. _V -> ( ( ( [. A / x ]. ph <-> E. x ( x = A /\ ph ) ) \/ ( [. A / x ]. ph <-> -. E. x ( x = A /\ ph ) ) ) <-> ( ( [. A / x ]. ph <-> E. x ( x = A /\ ph ) ) \/ ( [. A / x ]. ph <-> A. x ( x = A -> ph ) ) ) ) ) |
| 21 |
8 20
|
mpbii |
|- ( -. A e. _V -> ( ( [. A / x ]. ph <-> E. x ( x = A /\ ph ) ) \/ ( [. A / x ]. ph <-> A. x ( x = A -> ph ) ) ) ) |
| 22 |
7 21
|
pm2.61i |
|- ( ( [. A / x ]. ph <-> E. x ( x = A /\ ph ) ) \/ ( [. A / x ]. ph <-> A. x ( x = A -> ph ) ) ) |