| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbcan |  |-  ( [. A / x ]. ( ( ph /\ ps ) /\ ch ) <-> ( [. A / x ]. ( ph /\ ps ) /\ [. A / x ]. ch ) ) | 
						
							| 2 |  | sbcan |  |-  ( [. A / x ]. ( ph /\ ps ) <-> ( [. A / x ]. ph /\ [. A / x ]. ps ) ) | 
						
							| 3 | 1 2 | bianbi |  |-  ( [. A / x ]. ( ( ph /\ ps ) /\ ch ) <-> ( ( [. A / x ]. ph /\ [. A / x ]. ps ) /\ [. A / x ]. ch ) ) | 
						
							| 4 |  | df-3an |  |-  ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) ) | 
						
							| 5 | 4 | sbcbii |  |-  ( [. A / x ]. ( ph /\ ps /\ ch ) <-> [. A / x ]. ( ( ph /\ ps ) /\ ch ) ) | 
						
							| 6 |  | df-3an |  |-  ( ( [. A / x ]. ph /\ [. A / x ]. ps /\ [. A / x ]. ch ) <-> ( ( [. A / x ]. ph /\ [. A / x ]. ps ) /\ [. A / x ]. ch ) ) | 
						
							| 7 | 3 5 6 | 3bitr4i |  |-  ( [. A / x ]. ( ph /\ ps /\ ch ) <-> ( [. A / x ]. ph /\ [. A / x ]. ps /\ [. A / x ]. ch ) ) |