Metamath Proof Explorer


Theorem sbc3ie

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014) (Revised by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses sbc3ie.1
|- A e. _V
sbc3ie.2
|- B e. _V
sbc3ie.3
|- C e. _V
sbc3ie.4
|- ( ( x = A /\ y = B /\ z = C ) -> ( ph <-> ps ) )
Assertion sbc3ie
|- ( [. A / x ]. [. B / y ]. [. C / z ]. ph <-> ps )

Proof

Step Hyp Ref Expression
1 sbc3ie.1
 |-  A e. _V
2 sbc3ie.2
 |-  B e. _V
3 sbc3ie.3
 |-  C e. _V
4 sbc3ie.4
 |-  ( ( x = A /\ y = B /\ z = C ) -> ( ph <-> ps ) )
5 3 a1i
 |-  ( ( x = A /\ y = B ) -> C e. _V )
6 4 3expa
 |-  ( ( ( x = A /\ y = B ) /\ z = C ) -> ( ph <-> ps ) )
7 5 6 sbcied
 |-  ( ( x = A /\ y = B ) -> ( [. C / z ]. ph <-> ps ) )
8 1 2 7 sbc2ie
 |-  ( [. A / x ]. [. B / y ]. [. C / z ]. ph <-> ps )