| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbcor |  |-  ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) | 
						
							| 2 |  | df-3or |  |-  ( ( ph \/ ps \/ ch ) <-> ( ( ph \/ ps ) \/ ch ) ) | 
						
							| 3 | 2 | bicomi |  |-  ( ( ( ph \/ ps ) \/ ch ) <-> ( ph \/ ps \/ ch ) ) | 
						
							| 4 | 3 | sbcbii |  |-  ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> [. A / x ]. ( ph \/ ps \/ ch ) ) | 
						
							| 5 |  | sbcor |  |-  ( [. A / x ]. ( ph \/ ps ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps ) ) | 
						
							| 6 | 5 | orbi1i |  |-  ( ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) | 
						
							| 7 | 1 4 6 | 3bitr3i |  |-  ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) | 
						
							| 8 |  | df-3or |  |-  ( ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) | 
						
							| 9 | 7 8 | bitr4i |  |-  ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) ) |