Step |
Hyp |
Ref |
Expression |
1 |
|
idn1 |
|- (. A e. B ->. A e. B ). |
2 |
|
sbcor |
|- ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) |
3 |
2
|
a1i |
|- ( A e. B -> ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) ) |
4 |
1 3
|
e1a |
|- (. A e. B ->. ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) ). |
5 |
|
df-3or |
|- ( ( ph \/ ps \/ ch ) <-> ( ( ph \/ ps ) \/ ch ) ) |
6 |
5
|
bicomi |
|- ( ( ( ph \/ ps ) \/ ch ) <-> ( ph \/ ps \/ ch ) ) |
7 |
6
|
ax-gen |
|- A. x ( ( ( ph \/ ps ) \/ ch ) <-> ( ph \/ ps \/ ch ) ) |
8 |
|
spsbc |
|- ( A e. B -> ( A. x ( ( ( ph \/ ps ) \/ ch ) <-> ( ph \/ ps \/ ch ) ) -> [. A / x ]. ( ( ( ph \/ ps ) \/ ch ) <-> ( ph \/ ps \/ ch ) ) ) ) |
9 |
1 7 8
|
e10 |
|- (. A e. B ->. [. A / x ]. ( ( ( ph \/ ps ) \/ ch ) <-> ( ph \/ ps \/ ch ) ) ). |
10 |
|
sbcbig |
|- ( A e. B -> ( [. A / x ]. ( ( ( ph \/ ps ) \/ ch ) <-> ( ph \/ ps \/ ch ) ) <-> ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> [. A / x ]. ( ph \/ ps \/ ch ) ) ) ) |
11 |
10
|
biimpd |
|- ( A e. B -> ( [. A / x ]. ( ( ( ph \/ ps ) \/ ch ) <-> ( ph \/ ps \/ ch ) ) -> ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> [. A / x ]. ( ph \/ ps \/ ch ) ) ) ) |
12 |
1 9 11
|
e11 |
|- (. A e. B ->. ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> [. A / x ]. ( ph \/ ps \/ ch ) ) ). |
13 |
|
bitr3 |
|- ( ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> [. A / x ]. ( ph \/ ps \/ ch ) ) -> ( ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) -> ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) ) ) |
14 |
13
|
com12 |
|- ( ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) -> ( ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> [. A / x ]. ( ph \/ ps \/ ch ) ) -> ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) ) ) |
15 |
4 12 14
|
e11 |
|- (. A e. B ->. ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) ). |
16 |
|
sbcor |
|- ( [. A / x ]. ( ph \/ ps ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps ) ) |
17 |
16
|
a1i |
|- ( A e. B -> ( [. A / x ]. ( ph \/ ps ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps ) ) ) |
18 |
1 17
|
e1a |
|- (. A e. B ->. ( [. A / x ]. ( ph \/ ps ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps ) ) ). |
19 |
|
orbi1 |
|- ( ( [. A / x ]. ( ph \/ ps ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps ) ) -> ( ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) ) |
20 |
18 19
|
e1a |
|- (. A e. B ->. ( ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) ). |
21 |
|
bibi1 |
|- ( ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) -> ( ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) <-> ( ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) ) ) |
22 |
21
|
biimprd |
|- ( ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) -> ( ( ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) -> ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) ) ) |
23 |
15 20 22
|
e11 |
|- (. A e. B ->. ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) ). |
24 |
|
df-3or |
|- ( ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) |
25 |
24
|
bicomi |
|- ( ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) ) |
26 |
|
bibi1 |
|- ( ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) -> ( ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) ) <-> ( ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) ) ) ) |
27 |
26
|
biimprd |
|- ( ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) -> ( ( ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) ) -> ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) ) ) ) |
28 |
23 25 27
|
e10 |
|- (. A e. B ->. ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) ) ). |
29 |
28
|
in1 |
|- ( A e. B -> ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) ) ) |