Step |
Hyp |
Ref |
Expression |
1 |
|
sbcex |
|- ( [. A / x ]. ph -> A e. _V ) |
2 |
|
exsimpl |
|- ( E. x ( x = A /\ ph ) -> E. x x = A ) |
3 |
|
isset |
|- ( A e. _V <-> E. x x = A ) |
4 |
2 3
|
sylibr |
|- ( E. x ( x = A /\ ph ) -> A e. _V ) |
5 |
|
dfsbcq2 |
|- ( y = A -> ( [ y / x ] ph <-> [. A / x ]. ph ) ) |
6 |
|
eqeq2 |
|- ( y = A -> ( x = y <-> x = A ) ) |
7 |
6
|
anbi1d |
|- ( y = A -> ( ( x = y /\ ph ) <-> ( x = A /\ ph ) ) ) |
8 |
7
|
exbidv |
|- ( y = A -> ( E. x ( x = y /\ ph ) <-> E. x ( x = A /\ ph ) ) ) |
9 |
|
sb5 |
|- ( [ y / x ] ph <-> E. x ( x = y /\ ph ) ) |
10 |
5 8 9
|
vtoclbg |
|- ( A e. _V -> ( [. A / x ]. ph <-> E. x ( x = A /\ ph ) ) ) |
11 |
1 4 10
|
pm5.21nii |
|- ( [. A / x ]. ph <-> E. x ( x = A /\ ph ) ) |