Description: An equivalence for class substitution. (Contributed by NM, 23-Aug-1993) (Proof shortened by Eric Schmidt, 17-Jan-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbc6.1 | |- A e. _V |
|
| Assertion | sbc6 | |- ( [. A / x ]. ph <-> A. x ( x = A -> ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc6.1 | |- A e. _V |
|
| 2 | sbc6g | |- ( A e. _V -> ( [. A / x ]. ph <-> A. x ( x = A -> ph ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( [. A / x ]. ph <-> A. x ( x = A -> ph ) ) |