Description: This is the closest we can get to df-sbc if we start from dfsbcq (see its comments) and dfsbcq2 . (Contributed by NM, 18-Nov-2008) (Proof shortened by Andrew Salmon, 29-Jun-2011) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbc8g | |- ( A e. V -> ( [. A / x ]. ph <-> A e. { x | ph } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq | |- ( y = A -> ( [. y / x ]. ph <-> [. A / x ]. ph ) ) |
|
| 2 | eleq1 | |- ( y = A -> ( y e. { x | ph } <-> A e. { x | ph } ) ) |
|
| 3 | df-clab | |- ( y e. { x | ph } <-> [ y / x ] ph ) |
|
| 4 | equid | |- y = y |
|
| 5 | dfsbcq2 | |- ( y = y -> ( [ y / x ] ph <-> [. y / x ]. ph ) ) |
|
| 6 | 4 5 | ax-mp | |- ( [ y / x ] ph <-> [. y / x ]. ph ) |
| 7 | 3 6 | bitr2i | |- ( [. y / x ]. ph <-> y e. { x | ph } ) |
| 8 | 1 2 7 | vtoclbg | |- ( A e. V -> ( [. A / x ]. ph <-> A e. { x | ph } ) ) |