Metamath Proof Explorer


Theorem sbcal

Description: Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016) (Revised by NM, 18-Aug-2018)

Ref Expression
Assertion sbcal
|- ( [. A / y ]. A. x ph <-> A. x [. A / y ]. ph )

Proof

Step Hyp Ref Expression
1 sbcex
 |-  ( [. A / y ]. A. x ph -> A e. _V )
2 sbcex
 |-  ( [. A / y ]. ph -> A e. _V )
3 2 sps
 |-  ( A. x [. A / y ]. ph -> A e. _V )
4 dfsbcq2
 |-  ( z = A -> ( [ z / y ] A. x ph <-> [. A / y ]. A. x ph ) )
5 dfsbcq2
 |-  ( z = A -> ( [ z / y ] ph <-> [. A / y ]. ph ) )
6 5 albidv
 |-  ( z = A -> ( A. x [ z / y ] ph <-> A. x [. A / y ]. ph ) )
7 sbal
 |-  ( [ z / y ] A. x ph <-> A. x [ z / y ] ph )
8 4 6 7 vtoclbg
 |-  ( A e. _V -> ( [. A / y ]. A. x ph <-> A. x [. A / y ]. ph ) )
9 1 3 8 pm5.21nii
 |-  ( [. A / y ]. A. x ph <-> A. x [. A / y ]. ph )