Step |
Hyp |
Ref |
Expression |
1 |
|
sbcex |
|- ( [. A / x ]. ( ph /\ ps ) -> A e. _V ) |
2 |
|
sbcex |
|- ( [. A / x ]. ps -> A e. _V ) |
3 |
2
|
adantl |
|- ( ( [. A / x ]. ph /\ [. A / x ]. ps ) -> A e. _V ) |
4 |
|
dfsbcq2 |
|- ( y = A -> ( [ y / x ] ( ph /\ ps ) <-> [. A / x ]. ( ph /\ ps ) ) ) |
5 |
|
dfsbcq2 |
|- ( y = A -> ( [ y / x ] ph <-> [. A / x ]. ph ) ) |
6 |
|
dfsbcq2 |
|- ( y = A -> ( [ y / x ] ps <-> [. A / x ]. ps ) ) |
7 |
5 6
|
anbi12d |
|- ( y = A -> ( ( [ y / x ] ph /\ [ y / x ] ps ) <-> ( [. A / x ]. ph /\ [. A / x ]. ps ) ) ) |
8 |
|
sban |
|- ( [ y / x ] ( ph /\ ps ) <-> ( [ y / x ] ph /\ [ y / x ] ps ) ) |
9 |
4 7 8
|
vtoclbg |
|- ( A e. _V -> ( [. A / x ]. ( ph /\ ps ) <-> ( [. A / x ]. ph /\ [. A / x ]. ps ) ) ) |
10 |
1 3 9
|
pm5.21nii |
|- ( [. A / x ]. ( ph /\ ps ) <-> ( [. A / x ]. ph /\ [. A / x ]. ps ) ) |