Metamath Proof Explorer


Theorem sbcbi1

Description: Distribution of class substitution over biconditional. One direction of sbcbig that holds for proper classes. (Contributed by NM, 17-Aug-2018)

Ref Expression
Assertion sbcbi1
|- ( [. A / x ]. ( ph <-> ps ) -> ( [. A / x ]. ph <-> [. A / x ]. ps ) )

Proof

Step Hyp Ref Expression
1 sbcex
 |-  ( [. A / x ]. ( ph <-> ps ) -> A e. _V )
2 sbcbig
 |-  ( A e. _V -> ( [. A / x ]. ( ph <-> ps ) <-> ( [. A / x ]. ph <-> [. A / x ]. ps ) ) )
3 2 biimpd
 |-  ( A e. _V -> ( [. A / x ]. ( ph <-> ps ) -> ( [. A / x ]. ph <-> [. A / x ]. ps ) ) )
4 1 3 mpcom
 |-  ( [. A / x ]. ( ph <-> ps ) -> ( [. A / x ]. ph <-> [. A / x ]. ps ) )