Description: Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018) (Proof shortened by Wolf Lammen, 4-May-2023) Avoid ax-10, ax-12. (Revised by Steven Nguyen, 5-May-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | sbcbi2 | |- ( A. x ( ph <-> ps ) -> ( [. A / x ]. ph <-> [. A / x ]. ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi1 | |- ( A. x ( ph <-> ps ) -> { x | ph } = { x | ps } ) |
|
2 | eleq2 | |- ( { x | ph } = { x | ps } -> ( A e. { x | ph } <-> A e. { x | ps } ) ) |
|
3 | 1 2 | syl | |- ( A. x ( ph <-> ps ) -> ( A e. { x | ph } <-> A e. { x | ps } ) ) |
4 | df-sbc | |- ( [. A / x ]. ph <-> A e. { x | ph } ) |
|
5 | df-sbc | |- ( [. A / x ]. ps <-> A e. { x | ps } ) |
|
6 | 3 4 5 | 3bitr4g | |- ( A. x ( ph <-> ps ) -> ( [. A / x ]. ph <-> [. A / x ]. ps ) ) |