Metamath Proof Explorer


Theorem sbcbi2

Description: Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018) (Proof shortened by Wolf Lammen, 4-May-2023) Avoid ax-10, ax-12. (Revised by Steven Nguyen, 5-May-2024)

Ref Expression
Assertion sbcbi2
|- ( A. x ( ph <-> ps ) -> ( [. A / x ]. ph <-> [. A / x ]. ps ) )

Proof

Step Hyp Ref Expression
1 abbi1
 |-  ( A. x ( ph <-> ps ) -> { x | ph } = { x | ps } )
2 eleq2
 |-  ( { x | ph } = { x | ps } -> ( A e. { x | ph } <-> A e. { x | ps } ) )
3 1 2 syl
 |-  ( A. x ( ph <-> ps ) -> ( A e. { x | ph } <-> A e. { x | ps } ) )
4 df-sbc
 |-  ( [. A / x ]. ph <-> A e. { x | ph } )
5 df-sbc
 |-  ( [. A / x ]. ps <-> A e. { x | ps } )
6 3 4 5 3bitr4g
 |-  ( A. x ( ph <-> ps ) -> ( [. A / x ]. ph <-> [. A / x ]. ps ) )