Metamath Proof Explorer


Theorem sbcbid

Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014)

Ref Expression
Hypotheses sbcbid.1
|- F/ x ph
sbcbid.2
|- ( ph -> ( ps <-> ch ) )
Assertion sbcbid
|- ( ph -> ( [. A / x ]. ps <-> [. A / x ]. ch ) )

Proof

Step Hyp Ref Expression
1 sbcbid.1
 |-  F/ x ph
2 sbcbid.2
 |-  ( ph -> ( ps <-> ch ) )
3 1 2 abbid
 |-  ( ph -> { x | ps } = { x | ch } )
4 3 eleq2d
 |-  ( ph -> ( A e. { x | ps } <-> A e. { x | ch } ) )
5 df-sbc
 |-  ( [. A / x ]. ps <-> A e. { x | ps } )
6 df-sbc
 |-  ( [. A / x ]. ch <-> A e. { x | ch } )
7 4 5 6 3bitr4g
 |-  ( ph -> ( [. A / x ]. ps <-> [. A / x ]. ch ) )