Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sbcbid.1 | |- F/ x ph |
|
sbcbid.2 | |- ( ph -> ( ps <-> ch ) ) |
||
Assertion | sbcbid | |- ( ph -> ( [. A / x ]. ps <-> [. A / x ]. ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbid.1 | |- F/ x ph |
|
2 | sbcbid.2 | |- ( ph -> ( ps <-> ch ) ) |
|
3 | 1 2 | abbid | |- ( ph -> { x | ps } = { x | ch } ) |
4 | 3 | eleq2d | |- ( ph -> ( A e. { x | ps } <-> A e. { x | ch } ) ) |
5 | df-sbc | |- ( [. A / x ]. ps <-> A e. { x | ps } ) |
|
6 | df-sbc | |- ( [. A / x ]. ch <-> A e. { x | ch } ) |
|
7 | 4 5 6 | 3bitr4g | |- ( ph -> ( [. A / x ]. ps <-> [. A / x ]. ch ) ) |