| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfsbcq2 |  |-  ( y = A -> ( [ y / x ] ( ph <-> ps ) <-> [. A / x ]. ( ph <-> ps ) ) ) | 
						
							| 2 |  | dfsbcq2 |  |-  ( y = A -> ( [ y / x ] ph <-> [. A / x ]. ph ) ) | 
						
							| 3 |  | dfsbcq2 |  |-  ( y = A -> ( [ y / x ] ps <-> [. A / x ]. ps ) ) | 
						
							| 4 | 2 3 | bibi12d |  |-  ( y = A -> ( ( [ y / x ] ph <-> [ y / x ] ps ) <-> ( [. A / x ]. ph <-> [. A / x ]. ps ) ) ) | 
						
							| 5 |  | sbbi |  |-  ( [ y / x ] ( ph <-> ps ) <-> ( [ y / x ] ph <-> [ y / x ] ps ) ) | 
						
							| 6 | 1 4 5 | vtoclbg |  |-  ( A e. V -> ( [. A / x ]. ( ph <-> ps ) <-> ( [. A / x ]. ph <-> [. A / x ]. ps ) ) ) |