Metamath Proof Explorer


Theorem sbcbii

Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005)

Ref Expression
Hypothesis sbcbii.1
|- ( ph <-> ps )
Assertion sbcbii
|- ( [. A / x ]. ph <-> [. A / x ]. ps )

Proof

Step Hyp Ref Expression
1 sbcbii.1
 |-  ( ph <-> ps )
2 1 a1i
 |-  ( T. -> ( ph <-> ps ) )
3 2 sbcbidv
 |-  ( T. -> ( [. A / x ]. ph <-> [. A / x ]. ps ) )
4 3 mptru
 |-  ( [. A / x ]. ph <-> [. A / x ]. ps )