| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcbr123 |
|- ( [. A / x ]. B R C <-> [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C ) |
| 2 |
|
csbconstg |
|- ( A e. _V -> [_ A / x ]_ B = B ) |
| 3 |
|
csbconstg |
|- ( A e. _V -> [_ A / x ]_ C = C ) |
| 4 |
2 3
|
breq12d |
|- ( A e. _V -> ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C <-> B [_ A / x ]_ R C ) ) |
| 5 |
|
br0 |
|- -. [_ A / x ]_ B (/) [_ A / x ]_ C |
| 6 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ R = (/) ) |
| 7 |
6
|
breqd |
|- ( -. A e. _V -> ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C <-> [_ A / x ]_ B (/) [_ A / x ]_ C ) ) |
| 8 |
5 7
|
mtbiri |
|- ( -. A e. _V -> -. [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C ) |
| 9 |
|
br0 |
|- -. B (/) C |
| 10 |
6
|
breqd |
|- ( -. A e. _V -> ( B [_ A / x ]_ R C <-> B (/) C ) ) |
| 11 |
9 10
|
mtbiri |
|- ( -. A e. _V -> -. B [_ A / x ]_ R C ) |
| 12 |
8 11
|
2falsed |
|- ( -. A e. _V -> ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C <-> B [_ A / x ]_ R C ) ) |
| 13 |
4 12
|
pm2.61i |
|- ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C <-> B [_ A / x ]_ R C ) |
| 14 |
1 13
|
bitri |
|- ( [. A / x ]. B R C <-> B [_ A / x ]_ R C ) |