Metamath Proof Explorer


Theorem sbcbr

Description: Move substitution in and out of a binary relation. (Contributed by NM, 23-Aug-2018)

Ref Expression
Assertion sbcbr
|- ( [. A / x ]. B R C <-> B [_ A / x ]_ R C )

Proof

Step Hyp Ref Expression
1 sbcbr123
 |-  ( [. A / x ]. B R C <-> [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C )
2 csbconstg
 |-  ( A e. _V -> [_ A / x ]_ B = B )
3 csbconstg
 |-  ( A e. _V -> [_ A / x ]_ C = C )
4 2 3 breq12d
 |-  ( A e. _V -> ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C <-> B [_ A / x ]_ R C ) )
5 br0
 |-  -. [_ A / x ]_ B (/) [_ A / x ]_ C
6 csbprc
 |-  ( -. A e. _V -> [_ A / x ]_ R = (/) )
7 6 breqd
 |-  ( -. A e. _V -> ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C <-> [_ A / x ]_ B (/) [_ A / x ]_ C ) )
8 5 7 mtbiri
 |-  ( -. A e. _V -> -. [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C )
9 br0
 |-  -. B (/) C
10 6 breqd
 |-  ( -. A e. _V -> ( B [_ A / x ]_ R C <-> B (/) C ) )
11 9 10 mtbiri
 |-  ( -. A e. _V -> -. B [_ A / x ]_ R C )
12 8 11 2falsed
 |-  ( -. A e. _V -> ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C <-> B [_ A / x ]_ R C ) )
13 4 12 pm2.61i
 |-  ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C <-> B [_ A / x ]_ R C )
14 1 13 bitri
 |-  ( [. A / x ]. B R C <-> B [_ A / x ]_ R C )