Step |
Hyp |
Ref |
Expression |
1 |
|
sbcex |
|- ( [. A / x ]. B R C -> A e. _V ) |
2 |
|
br0 |
|- -. [_ A / x ]_ B (/) [_ A / x ]_ C |
3 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ R = (/) ) |
4 |
3
|
breqd |
|- ( -. A e. _V -> ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C <-> [_ A / x ]_ B (/) [_ A / x ]_ C ) ) |
5 |
2 4
|
mtbiri |
|- ( -. A e. _V -> -. [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C ) |
6 |
5
|
con4i |
|- ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C -> A e. _V ) |
7 |
|
dfsbcq2 |
|- ( y = A -> ( [ y / x ] B R C <-> [. A / x ]. B R C ) ) |
8 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ B = [_ A / x ]_ B ) |
9 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ R = [_ A / x ]_ R ) |
10 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ C = [_ A / x ]_ C ) |
11 |
8 9 10
|
breq123d |
|- ( y = A -> ( [_ y / x ]_ B [_ y / x ]_ R [_ y / x ]_ C <-> [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C ) ) |
12 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ B |
13 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ R |
14 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ C |
15 |
12 13 14
|
nfbr |
|- F/ x [_ y / x ]_ B [_ y / x ]_ R [_ y / x ]_ C |
16 |
|
csbeq1a |
|- ( x = y -> B = [_ y / x ]_ B ) |
17 |
|
csbeq1a |
|- ( x = y -> R = [_ y / x ]_ R ) |
18 |
|
csbeq1a |
|- ( x = y -> C = [_ y / x ]_ C ) |
19 |
16 17 18
|
breq123d |
|- ( x = y -> ( B R C <-> [_ y / x ]_ B [_ y / x ]_ R [_ y / x ]_ C ) ) |
20 |
15 19
|
sbiev |
|- ( [ y / x ] B R C <-> [_ y / x ]_ B [_ y / x ]_ R [_ y / x ]_ C ) |
21 |
7 11 20
|
vtoclbg |
|- ( A e. _V -> ( [. A / x ]. B R C <-> [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C ) ) |
22 |
1 6 21
|
pm5.21nii |
|- ( [. A / x ]. B R C <-> [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C ) |