| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcex |
|- ( [. A / x ]. B R C -> A e. _V ) |
| 2 |
|
br0 |
|- -. [_ A / x ]_ B (/) [_ A / x ]_ C |
| 3 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ R = (/) ) |
| 4 |
3
|
breqd |
|- ( -. A e. _V -> ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C <-> [_ A / x ]_ B (/) [_ A / x ]_ C ) ) |
| 5 |
2 4
|
mtbiri |
|- ( -. A e. _V -> -. [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C ) |
| 6 |
5
|
con4i |
|- ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C -> A e. _V ) |
| 7 |
|
dfsbcq2 |
|- ( y = A -> ( [ y / x ] B R C <-> [. A / x ]. B R C ) ) |
| 8 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ B = [_ A / x ]_ B ) |
| 9 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ R = [_ A / x ]_ R ) |
| 10 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ C = [_ A / x ]_ C ) |
| 11 |
8 9 10
|
breq123d |
|- ( y = A -> ( [_ y / x ]_ B [_ y / x ]_ R [_ y / x ]_ C <-> [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C ) ) |
| 12 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ B |
| 13 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ R |
| 14 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ C |
| 15 |
12 13 14
|
nfbr |
|- F/ x [_ y / x ]_ B [_ y / x ]_ R [_ y / x ]_ C |
| 16 |
|
csbeq1a |
|- ( x = y -> B = [_ y / x ]_ B ) |
| 17 |
|
csbeq1a |
|- ( x = y -> R = [_ y / x ]_ R ) |
| 18 |
|
csbeq1a |
|- ( x = y -> C = [_ y / x ]_ C ) |
| 19 |
16 17 18
|
breq123d |
|- ( x = y -> ( B R C <-> [_ y / x ]_ B [_ y / x ]_ R [_ y / x ]_ C ) ) |
| 20 |
15 19
|
sbiev |
|- ( [ y / x ] B R C <-> [_ y / x ]_ B [_ y / x ]_ R [_ y / x ]_ C ) |
| 21 |
7 11 20
|
vtoclbg |
|- ( A e. _V -> ( [. A / x ]. B R C <-> [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C ) ) |
| 22 |
1 6 21
|
pm5.21nii |
|- ( [. A / x ]. B R C <-> [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C ) |