Metamath Proof Explorer


Theorem sbcbr12g

Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005)

Ref Expression
Assertion sbcbr12g
|- ( A e. V -> ( [. A / x ]. B R C <-> [_ A / x ]_ B R [_ A / x ]_ C ) )

Proof

Step Hyp Ref Expression
1 sbcbr123
 |-  ( [. A / x ]. B R C <-> [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C )
2 csbconstg
 |-  ( A e. V -> [_ A / x ]_ R = R )
3 2 breqd
 |-  ( A e. V -> ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C <-> [_ A / x ]_ B R [_ A / x ]_ C ) )
4 1 3 syl5bb
 |-  ( A e. V -> ( [. A / x ]. B R C <-> [_ A / x ]_ B R [_ A / x ]_ C ) )