Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | sbcbr12g | |- ( A e. V -> ( [. A / x ]. B R C <-> [_ A / x ]_ B R [_ A / x ]_ C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbr123 | |- ( [. A / x ]. B R C <-> [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C ) |
|
2 | csbconstg | |- ( A e. V -> [_ A / x ]_ R = R ) |
|
3 | 2 | breqd | |- ( A e. V -> ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C <-> [_ A / x ]_ B R [_ A / x ]_ C ) ) |
4 | 1 3 | syl5bb | |- ( A e. V -> ( [. A / x ]. B R C <-> [_ A / x ]_ B R [_ A / x ]_ C ) ) |