Description: A composition law for class substitution. Importantly, x may occur free in the class expression substituted for A . (Contributed by NM, 5-Sep-2004) (Proof shortened by Andrew Salmon, 8-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbcco2.1 | |- ( x = y -> A = B ) |
|
| Assertion | sbcco2 | |- ( [. x / y ]. [. B / x ]. ph <-> [. A / x ]. ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcco2.1 | |- ( x = y -> A = B ) |
|
| 2 | sbsbc | |- ( [ x / y ] [. B / x ]. ph <-> [. x / y ]. [. B / x ]. ph ) |
|
| 3 | 1 | equcoms | |- ( y = x -> A = B ) |
| 4 | dfsbcq | |- ( A = B -> ( [. A / x ]. ph <-> [. B / x ]. ph ) ) |
|
| 5 | 4 | bicomd | |- ( A = B -> ( [. B / x ]. ph <-> [. A / x ]. ph ) ) |
| 6 | 3 5 | syl | |- ( y = x -> ( [. B / x ]. ph <-> [. A / x ]. ph ) ) |
| 7 | 6 | sbievw | |- ( [ x / y ] [. B / x ]. ph <-> [. A / x ]. ph ) |
| 8 | 2 7 | bitr3i | |- ( [. x / y ]. [. B / x ]. ph <-> [. A / x ]. ph ) |