Metamath Proof Explorer


Theorem sbcco2

Description: A composition law for class substitution. Importantly, x may occur free in the class expression substituted for A . (Contributed by NM, 5-Sep-2004) (Proof shortened by Andrew Salmon, 8-Jun-2011)

Ref Expression
Hypothesis sbcco2.1
|- ( x = y -> A = B )
Assertion sbcco2
|- ( [. x / y ]. [. B / x ]. ph <-> [. A / x ]. ph )

Proof

Step Hyp Ref Expression
1 sbcco2.1
 |-  ( x = y -> A = B )
2 sbsbc
 |-  ( [ x / y ] [. B / x ]. ph <-> [. x / y ]. [. B / x ]. ph )
3 1 equcoms
 |-  ( y = x -> A = B )
4 dfsbcq
 |-  ( A = B -> ( [. A / x ]. ph <-> [. B / x ]. ph ) )
5 4 bicomd
 |-  ( A = B -> ( [. B / x ]. ph <-> [. A / x ]. ph ) )
6 3 5 syl
 |-  ( y = x -> ( [. B / x ]. ph <-> [. A / x ]. ph ) )
7 6 sbievw
 |-  ( [ x / y ] [. B / x ]. ph <-> [. A / x ]. ph )
8 2 7 bitr3i
 |-  ( [. x / y ]. [. B / x ]. ph <-> [. A / x ]. ph )