Metamath Proof Explorer


Theorem sbcco3g

Description: Composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker sbcco3gw when possible. (Contributed by NM, 27-Nov-2005) (Revised by Mario Carneiro, 11-Nov-2016) (New usage is discouraged.)

Ref Expression
Hypothesis sbcco3g.1
|- ( x = A -> B = C )
Assertion sbcco3g
|- ( A e. V -> ( [. A / x ]. [. B / y ]. ph <-> [. C / y ]. ph ) )

Proof

Step Hyp Ref Expression
1 sbcco3g.1
 |-  ( x = A -> B = C )
2 sbcnestg
 |-  ( A e. V -> ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. ph ) )
3 elex
 |-  ( A e. V -> A e. _V )
4 nfcvd
 |-  ( A e. _V -> F/_ x C )
5 4 1 csbiegf
 |-  ( A e. _V -> [_ A / x ]_ B = C )
6 dfsbcq
 |-  ( [_ A / x ]_ B = C -> ( [. [_ A / x ]_ B / y ]. ph <-> [. C / y ]. ph ) )
7 3 5 6 3syl
 |-  ( A e. V -> ( [. [_ A / x ]_ B / y ]. ph <-> [. C / y ]. ph ) )
8 2 7 bitrd
 |-  ( A e. V -> ( [. A / x ]. [. B / y ]. ph <-> [. C / y ]. ph ) )