| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbcco3g.1 |  |-  ( x = A -> B = C ) | 
						
							| 2 |  | sbcnestg |  |-  ( A e. V -> ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. ph ) ) | 
						
							| 3 |  | elex |  |-  ( A e. V -> A e. _V ) | 
						
							| 4 |  | nfcvd |  |-  ( A e. _V -> F/_ x C ) | 
						
							| 5 | 4 1 | csbiegf |  |-  ( A e. _V -> [_ A / x ]_ B = C ) | 
						
							| 6 |  | dfsbcq |  |-  ( [_ A / x ]_ B = C -> ( [. [_ A / x ]_ B / y ]. ph <-> [. C / y ]. ph ) ) | 
						
							| 7 | 3 5 6 | 3syl |  |-  ( A e. V -> ( [. [_ A / x ]_ B / y ]. ph <-> [. C / y ]. ph ) ) | 
						
							| 8 | 2 7 | bitrd |  |-  ( A e. V -> ( [. A / x ]. [. B / y ]. ph <-> [. C / y ]. ph ) ) |