| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcco3gw.1 |
|- ( x = A -> B = C ) |
| 2 |
|
sbcnestgw |
|- ( A e. V -> ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. ph ) ) |
| 3 |
|
elex |
|- ( A e. V -> A e. _V ) |
| 4 |
|
nfcvd |
|- ( A e. _V -> F/_ x C ) |
| 5 |
4 1
|
csbiegf |
|- ( A e. _V -> [_ A / x ]_ B = C ) |
| 6 |
|
dfsbcq |
|- ( [_ A / x ]_ B = C -> ( [. [_ A / x ]_ B / y ]. ph <-> [. C / y ]. ph ) ) |
| 7 |
3 5 6
|
3syl |
|- ( A e. V -> ( [. [_ A / x ]_ B / y ]. ph <-> [. C / y ]. ph ) ) |
| 8 |
2 7
|
bitrd |
|- ( A e. V -> ( [. A / x ]. [. B / y ]. ph <-> [. C / y ]. ph ) ) |