| Step | Hyp | Ref | Expression | 
						
							| 1 |  | excom |  |-  ( E. x E. y ( x = A /\ ( y = B /\ ph ) ) <-> E. y E. x ( x = A /\ ( y = B /\ ph ) ) ) | 
						
							| 2 |  | exdistr |  |-  ( E. x E. y ( x = A /\ ( y = B /\ ph ) ) <-> E. x ( x = A /\ E. y ( y = B /\ ph ) ) ) | 
						
							| 3 |  | an12 |  |-  ( ( x = A /\ ( y = B /\ ph ) ) <-> ( y = B /\ ( x = A /\ ph ) ) ) | 
						
							| 4 | 3 | exbii |  |-  ( E. x ( x = A /\ ( y = B /\ ph ) ) <-> E. x ( y = B /\ ( x = A /\ ph ) ) ) | 
						
							| 5 |  | 19.42v |  |-  ( E. x ( y = B /\ ( x = A /\ ph ) ) <-> ( y = B /\ E. x ( x = A /\ ph ) ) ) | 
						
							| 6 | 4 5 | bitri |  |-  ( E. x ( x = A /\ ( y = B /\ ph ) ) <-> ( y = B /\ E. x ( x = A /\ ph ) ) ) | 
						
							| 7 | 6 | exbii |  |-  ( E. y E. x ( x = A /\ ( y = B /\ ph ) ) <-> E. y ( y = B /\ E. x ( x = A /\ ph ) ) ) | 
						
							| 8 | 1 2 7 | 3bitr3i |  |-  ( E. x ( x = A /\ E. y ( y = B /\ ph ) ) <-> E. y ( y = B /\ E. x ( x = A /\ ph ) ) ) | 
						
							| 9 |  | sbc5 |  |-  ( [. A / x ]. E. y ( y = B /\ ph ) <-> E. x ( x = A /\ E. y ( y = B /\ ph ) ) ) | 
						
							| 10 |  | sbc5 |  |-  ( [. B / y ]. E. x ( x = A /\ ph ) <-> E. y ( y = B /\ E. x ( x = A /\ ph ) ) ) | 
						
							| 11 | 8 9 10 | 3bitr4i |  |-  ( [. A / x ]. E. y ( y = B /\ ph ) <-> [. B / y ]. E. x ( x = A /\ ph ) ) | 
						
							| 12 |  | sbc5 |  |-  ( [. B / y ]. ph <-> E. y ( y = B /\ ph ) ) | 
						
							| 13 | 12 | sbcbii |  |-  ( [. A / x ]. [. B / y ]. ph <-> [. A / x ]. E. y ( y = B /\ ph ) ) | 
						
							| 14 |  | sbc5 |  |-  ( [. A / x ]. ph <-> E. x ( x = A /\ ph ) ) | 
						
							| 15 | 14 | sbcbii |  |-  ( [. B / y ]. [. A / x ]. ph <-> [. B / y ]. E. x ( x = A /\ ph ) ) | 
						
							| 16 | 11 13 15 | 3bitr4i |  |-  ( [. A / x ]. [. B / y ]. ph <-> [. B / y ]. [. A / x ]. ph ) |