Step |
Hyp |
Ref |
Expression |
1 |
|
sbcex |
|- ( [. A / y ]. [. y / x ]. ph -> A e. _V ) |
2 |
|
sbcex |
|- ( [. A / x ]. ph -> A e. _V ) |
3 |
|
dfsbcq |
|- ( z = A -> ( [. z / y ]. [. y / x ]. ph <-> [. A / y ]. [. y / x ]. ph ) ) |
4 |
|
dfsbcq |
|- ( z = A -> ( [. z / x ]. ph <-> [. A / x ]. ph ) ) |
5 |
|
sbsbc |
|- ( [ y / x ] ph <-> [. y / x ]. ph ) |
6 |
5
|
sbbii |
|- ( [ z / y ] [ y / x ] ph <-> [ z / y ] [. y / x ]. ph ) |
7 |
|
sbco2vv |
|- ( [ z / y ] [ y / x ] ph <-> [ z / x ] ph ) |
8 |
|
sbsbc |
|- ( [ z / y ] [. y / x ]. ph <-> [. z / y ]. [. y / x ]. ph ) |
9 |
6 7 8
|
3bitr3ri |
|- ( [. z / y ]. [. y / x ]. ph <-> [ z / x ] ph ) |
10 |
|
sbsbc |
|- ( [ z / x ] ph <-> [. z / x ]. ph ) |
11 |
9 10
|
bitri |
|- ( [. z / y ]. [. y / x ]. ph <-> [. z / x ]. ph ) |
12 |
3 4 11
|
vtoclbg |
|- ( A e. _V -> ( [. A / y ]. [. y / x ]. ph <-> [. A / x ]. ph ) ) |
13 |
1 2 12
|
pm5.21nii |
|- ( [. A / y ]. [. y / x ]. ph <-> [. A / x ]. ph ) |