| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcex |
|- ( [. A / y ]. [. y / x ]. ph -> A e. _V ) |
| 2 |
|
sbcex |
|- ( [. A / x ]. ph -> A e. _V ) |
| 3 |
|
dfsbcq |
|- ( z = A -> ( [. z / y ]. [. y / x ]. ph <-> [. A / y ]. [. y / x ]. ph ) ) |
| 4 |
|
dfsbcq |
|- ( z = A -> ( [. z / x ]. ph <-> [. A / x ]. ph ) ) |
| 5 |
|
sbsbc |
|- ( [ y / x ] ph <-> [. y / x ]. ph ) |
| 6 |
5
|
sbbii |
|- ( [ z / y ] [ y / x ] ph <-> [ z / y ] [. y / x ]. ph ) |
| 7 |
|
sbco2vv |
|- ( [ z / y ] [ y / x ] ph <-> [ z / x ] ph ) |
| 8 |
|
sbsbc |
|- ( [ z / y ] [. y / x ]. ph <-> [. z / y ]. [. y / x ]. ph ) |
| 9 |
6 7 8
|
3bitr3ri |
|- ( [. z / y ]. [. y / x ]. ph <-> [ z / x ] ph ) |
| 10 |
|
sbsbc |
|- ( [ z / x ] ph <-> [. z / x ]. ph ) |
| 11 |
9 10
|
bitri |
|- ( [. z / y ]. [. y / x ]. ph <-> [. z / x ]. ph ) |
| 12 |
3 4 11
|
vtoclbg |
|- ( A e. _V -> ( [. A / y ]. [. y / x ]. ph <-> [. A / x ]. ph ) ) |
| 13 |
1 2 12
|
pm5.21nii |
|- ( [. A / y ]. [. y / x ]. ph <-> [. A / x ]. ph ) |