Step |
Hyp |
Ref |
Expression |
1 |
|
sbcex |
|- ( [. A / x ]. ph -> A e. _V ) |
2 |
|
elex |
|- ( A e. [_ A / x ]_ { x | ph } -> A e. _V ) |
3 |
|
abid |
|- ( x e. { x | ph } <-> ph ) |
4 |
3
|
sbcbii |
|- ( [. A / x ]. x e. { x | ph } <-> [. A / x ]. ph ) |
5 |
|
sbcel12 |
|- ( [. A / x ]. x e. { x | ph } <-> [_ A / x ]_ x e. [_ A / x ]_ { x | ph } ) |
6 |
|
csbvarg |
|- ( A e. _V -> [_ A / x ]_ x = A ) |
7 |
6
|
eleq1d |
|- ( A e. _V -> ( [_ A / x ]_ x e. [_ A / x ]_ { x | ph } <-> A e. [_ A / x ]_ { x | ph } ) ) |
8 |
5 7
|
bitrid |
|- ( A e. _V -> ( [. A / x ]. x e. { x | ph } <-> A e. [_ A / x ]_ { x | ph } ) ) |
9 |
4 8
|
bitr3id |
|- ( A e. _V -> ( [. A / x ]. ph <-> A e. [_ A / x ]_ { x | ph } ) ) |
10 |
1 2 9
|
pm5.21nii |
|- ( [. A / x ]. ph <-> A e. [_ A / x ]_ { x | ph } ) |