Metamath Proof Explorer


Theorem sbccsb2

Description: Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005) (Revised by NM, 18-Aug-2018)

Ref Expression
Assertion sbccsb2
|- ( [. A / x ]. ph <-> A e. [_ A / x ]_ { x | ph } )

Proof

Step Hyp Ref Expression
1 sbcex
 |-  ( [. A / x ]. ph -> A e. _V )
2 elex
 |-  ( A e. [_ A / x ]_ { x | ph } -> A e. _V )
3 abid
 |-  ( x e. { x | ph } <-> ph )
4 3 sbcbii
 |-  ( [. A / x ]. x e. { x | ph } <-> [. A / x ]. ph )
5 sbcel12
 |-  ( [. A / x ]. x e. { x | ph } <-> [_ A / x ]_ x e. [_ A / x ]_ { x | ph } )
6 csbvarg
 |-  ( A e. _V -> [_ A / x ]_ x = A )
7 6 eleq1d
 |-  ( A e. _V -> ( [_ A / x ]_ x e. [_ A / x ]_ { x | ph } <-> A e. [_ A / x ]_ { x | ph } ) )
8 5 7 syl5bb
 |-  ( A e. _V -> ( [. A / x ]. x e. { x | ph } <-> A e. [_ A / x ]_ { x | ph } ) )
9 4 8 bitr3id
 |-  ( A e. _V -> ( [. A / x ]. ph <-> A e. [_ A / x ]_ { x | ph } ) )
10 1 2 9 pm5.21nii
 |-  ( [. A / x ]. ph <-> A e. [_ A / x ]_ { x | ph } )