Description: Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018) Avoid ax-13 . (Revised by Wolf Lammen, 30-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | sbcel1v | |- ( [. A / x ]. x e. B <-> A e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex | |- ( [. A / x ]. x e. B -> A e. _V ) |
|
2 | elex | |- ( A e. B -> A e. _V ) |
|
3 | dfsbcq2 | |- ( y = A -> ( [ y / x ] x e. B <-> [. A / x ]. x e. B ) ) |
|
4 | eleq1 | |- ( y = A -> ( y e. B <-> A e. B ) ) |
|
5 | clelsb1 | |- ( [ y / x ] x e. B <-> y e. B ) |
|
6 | 3 4 5 | vtoclbg | |- ( A e. _V -> ( [. A / x ]. x e. B <-> A e. B ) ) |
7 | 1 2 6 | pm5.21nii | |- ( [. A / x ]. x e. B <-> A e. B ) |