Metamath Proof Explorer


Theorem sbcel21v

Description: Class substitution into a membership relation. One direction of sbcel2gv that holds for proper classes. (Contributed by NM, 17-Aug-2018)

Ref Expression
Assertion sbcel21v
|- ( [. B / x ]. A e. x -> A e. B )

Proof

Step Hyp Ref Expression
1 sbcex
 |-  ( [. B / x ]. A e. x -> B e. _V )
2 sbcel2gv
 |-  ( B e. _V -> ( [. B / x ]. A e. x <-> A e. B ) )
3 2 biimpd
 |-  ( B e. _V -> ( [. B / x ]. A e. x -> A e. B ) )
4 1 3 mpcom
 |-  ( [. B / x ]. A e. x -> A e. B )