Description: Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006) (Proof shortened by Andrew Salmon, 29-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcel2gv | |- ( B e. V -> ( [. B / x ]. A e. x <-> A e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | |- ( x = y -> ( A e. x <-> A e. y ) ) |
|
| 2 | eleq2 | |- ( y = B -> ( A e. y <-> A e. B ) ) |
|
| 3 | 1 2 | sbcie2g | |- ( B e. V -> ( [. B / x ]. A e. x <-> A e. B ) ) |