Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017) (Revised by NM, 30-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbceq1d.1 | |- ( ph -> A = B ) |
|
| Assertion | sbceq1d | |- ( ph -> ( [. A / x ]. ps <-> [. B / x ]. ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceq1d.1 | |- ( ph -> A = B ) |
|
| 2 | dfsbcq | |- ( A = B -> ( [. A / x ]. ps <-> [. B / x ]. ps ) ) |
|
| 3 | 1 2 | syl | |- ( ph -> ( [. A / x ]. ps <-> [. B / x ]. ps ) ) |