Metamath Proof Explorer


Theorem sbceq1dd

Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017) (Revised by NM, 30-Jun-2018)

Ref Expression
Hypotheses sbceq1d.1
|- ( ph -> A = B )
sbceq1dd.2
|- ( ph -> [. A / x ]. ps )
Assertion sbceq1dd
|- ( ph -> [. B / x ]. ps )

Proof

Step Hyp Ref Expression
1 sbceq1d.1
 |-  ( ph -> A = B )
2 sbceq1dd.2
 |-  ( ph -> [. A / x ]. ps )
3 1 sbceq1d
 |-  ( ph -> ( [. A / x ]. ps <-> [. B / x ]. ps ) )
4 2 3 mpbid
 |-  ( ph -> [. B / x ]. ps )