Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017) (Revised by NM, 30-Jun-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sbceq1d.1 | |- ( ph -> A = B ) |
|
sbceq1dd.2 | |- ( ph -> [. A / x ]. ps ) |
||
Assertion | sbceq1dd | |- ( ph -> [. B / x ]. ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1d.1 | |- ( ph -> A = B ) |
|
2 | sbceq1dd.2 | |- ( ph -> [. A / x ]. ps ) |
|
3 | 1 | sbceq1d | |- ( ph -> ( [. A / x ]. ps <-> [. B / x ]. ps ) ) |
4 | 2 3 | mpbid | |- ( ph -> [. B / x ]. ps ) |