Description: Move proper substitution to first argument of an equality. (Contributed by NM, 30-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbceq1g | |- ( A e. V -> ( [. A / x ]. B = C <-> [_ A / x ]_ B = C ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbceqg | |- ( A e. V -> ( [. A / x ]. B = C <-> [_ A / x ]_ B = [_ A / x ]_ C ) ) | |
| 2 | csbconstg | |- ( A e. V -> [_ A / x ]_ C = C ) | |
| 3 | 2 | eqeq2d | |- ( A e. V -> ( [_ A / x ]_ B = [_ A / x ]_ C <-> [_ A / x ]_ B = C ) ) | 
| 4 | 1 3 | bitrd | |- ( A e. V -> ( [. A / x ]. B = C <-> [_ A / x ]_ B = C ) ) |