Metamath Proof Explorer


Theorem sbceq1g

Description: Move proper substitution to first argument of an equality. (Contributed by NM, 30-Nov-2005)

Ref Expression
Assertion sbceq1g
|- ( A e. V -> ( [. A / x ]. B = C <-> [_ A / x ]_ B = C ) )

Proof

Step Hyp Ref Expression
1 sbceqg
 |-  ( A e. V -> ( [. A / x ]. B = C <-> [_ A / x ]_ B = [_ A / x ]_ C ) )
2 csbconstg
 |-  ( A e. V -> [_ A / x ]_ C = C )
3 2 eqeq2d
 |-  ( A e. V -> ( [_ A / x ]_ B = [_ A / x ]_ C <-> [_ A / x ]_ B = C ) )
4 1 3 bitrd
 |-  ( A e. V -> ( [. A / x ]. B = C <-> [_ A / x ]_ B = C ) )