Description: Equality theorem for class substitution. Class version of sbequ12r . (Contributed by NM, 4-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | sbceq2a | |- ( A = x -> ( [. A / x ]. ph <-> ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1a | |- ( x = A -> ( ph <-> [. A / x ]. ph ) ) |
|
2 | 1 | eqcoms | |- ( A = x -> ( ph <-> [. A / x ]. ph ) ) |
3 | 2 | bicomd | |- ( A = x -> ( [. A / x ]. ph <-> ph ) ) |