| Step | Hyp | Ref | Expression | 
						
							| 1 |  | spsbc |  |-  ( A e. V -> ( A. x ( x = A -> x = B ) -> [. A / x ]. ( x = A -> x = B ) ) ) | 
						
							| 2 |  | sbcimg |  |-  ( A e. V -> ( [. A / x ]. ( x = A -> x = B ) <-> ( [. A / x ]. x = A -> [. A / x ]. x = B ) ) ) | 
						
							| 3 |  | eqid |  |-  A = A | 
						
							| 4 |  | eqsbc1 |  |-  ( A e. V -> ( [. A / x ]. x = A <-> A = A ) ) | 
						
							| 5 | 3 4 | mpbiri |  |-  ( A e. V -> [. A / x ]. x = A ) | 
						
							| 6 |  | pm5.5 |  |-  ( [. A / x ]. x = A -> ( ( [. A / x ]. x = A -> [. A / x ]. x = B ) <-> [. A / x ]. x = B ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( A e. V -> ( ( [. A / x ]. x = A -> [. A / x ]. x = B ) <-> [. A / x ]. x = B ) ) | 
						
							| 8 |  | eqsbc1 |  |-  ( A e. V -> ( [. A / x ]. x = B <-> A = B ) ) | 
						
							| 9 | 2 7 8 | 3bitrd |  |-  ( A e. V -> ( [. A / x ]. ( x = A -> x = B ) <-> A = B ) ) | 
						
							| 10 | 1 9 | sylibd |  |-  ( A e. V -> ( A. x ( x = A -> x = B ) -> A = B ) ) |